
1. Tracing Multiple Subskills in DBNs 

Knowledge tracing models the student’s knowledge of a 

skill at step n as a hidden state K(n) that is true iff the 

student knows the skill.  The model’s learning parameters 

already know, learn, and forget respectively estimate the 

probabilities of knowing the skill at step 0, of a transition 

from not knowing the skill at step n-1 to knowing the skill 

at step n, and of a transition (typically omitted) from 

knowing to not knowing.  The model’s performance 

parameters guess and slip respectively estimate the 

probabilities of performing the step correctly without 

knowing the skill, and of getting the step wrong despite 

knowing the skill.  We can then use these parameters to 

infer the probability of knowing the skill at each step from 

a student’s observed performance P
(n)

 (correct or incorrect) 

on a sequence of steps requiring the skill. 

 To model steps that require multiple subskills, LR-DBN 

models each knowledge transition as a logistic regression 

over all of the required subskills. Figure 1 shows the 

architecture of LR-DBN, where Sj
(n)

 is true iff step n 

requires subskill j. LR-DBN computes the learning 

parameters for knowledge tracing as follows: 
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 Here T means true, F means false, and sigmoid is the 

sigmoid function in logistic regression: 

            
 

     
 

 

Therefore, besides the parameters guess and slip, LR-DBN 

must fit the coefficients   
   

,   , and   , for j=1,2,…, m, 

instead of the traditional parameters already know, learn, 

and forget.  

 LR-DBN uses the junction tree algorithm for exact 

inference and the Expectation Maximization (EM) 

algorithm to estimate parameters. EM can return a local 

optimal solution to maximize the likelihood of the model 

given the fitting data. It also uses the iteratively reweighted 

least squares (IRLS) algorithm to fit a logistic regression in 

a DBN.  

2. Tracing Multiple Subskills with BNT-SM 

We implemented LR-DBN as an extension of BNT-SM. 

Using BNT-SM requires just four steps: 

 Specify the data source in an XML specification. 
1. Specify the DBN structure in XML. 
2. Specify and initialize parameters in XML. 
3. Call RunBnet.m in Matlab. 

The main task in using BNT-SM is to configure the 

XML specification, which includes sections for input, 

output, and structure.  The first two sections specify the 

input and output files to use. The structure section has a 

nodes subsection that specifies the DBN topology, and an 

eclasses subsection that describes the parameters.  

2.1 Specifying a LR-DBN in XML 

The new BNT-SM uses the same XML as before, but adds 

an optional directive to use LR-DBN instead of a 

traditional DBN: 

<multi_subskill> yes </multi_subskill> 

As shown in Figure 2, the nodes section specifies the 

network topology: node 1 (kc, short for “knowledge 

component”) denotes the required multiple subskills, node 

2 (knowledge) denotes the student’s overall hidden 

knowledge, and the fluent node denotes the student’s 

performance. 

 The type multi identifies node 1 as the multiple-subskills 

node; its values field shows how many subskills are 

enumerated in the input data; and its prefix_field identifies 

which columns of input data to read for node kc. Non-multi 

type nodes, such as knowledge and fluent, have type 

discrete, values 2 (i.e. true or false), and field to identify 

which column to read in the input data. Latent is yes for 

knowledge node since it is a hidden state in LR-DBN.  

 Note that the topology, as well as the parameters, should 

repeat as the DBN unrolled further. Thus we only need to 

specify them for the first two time slices, i.e. the within 

and between transition fields indicating which nodes the 

current node has arcs to within the time slice and between 

time slices, respectively.  

 

 

 

 

Figure 1. Structure of an example DBN input to LR-DBN 



 … 

<nodes> 

 <node> 

  <id> 1 </id> 

  <name> kc </name> 

  <type> multi </type> 

  <values> 6 </values> 

  <latent> no </latent> 

  <prefix_field> kc </prefix_field> 

  <within> 

   <transition> knowledge </transition> 

  </within> 

  <between></between> 

 </node> 

 

  

    <node> 

  <id> 2 </id> 

  <name> knowledge </name> 

  <type> discrete </type> 

  <values> 2 </values> 

  <latent> yes </latent> 

  <field> knowledge </field> 

  <within> 

   <transition> fluent </transition> 

  </within> 

  <between> 

   <transition> knowledge </transition> 

  </between> 

 </node>  

 

 <node> 

  <id> 3 </id> 

  <name> fluent </name> 

  <type> discrete </type> 

  <values> 2 </values> 

  <latent> no </latent> 

  <field> fluent </field> 

  <within></within> 

  <between></between> 

 </node> 

</nodes> 

… 

Figure 2. A Specification of the LR-DBN Network Structure 

  So far we have explained how to specify LR-DBN’s 

topology. Now we will show how to specify its 

Conditional Probabilities Distributions (CPDs), i.e. its 

parameters, under section eclasses in XML. There are four 

eclasses: the first three describe the CPDs within the first 

time slice; while the last one describes the CPDs 

transitioned from the first time slice to the second. 

 As shown in Figure 3, The first eclass with formula 

P1(kc) has a type root. It is because kc has no parents and 

all of its values are observed, and no parameters need to be 

estimated. Thus we also don’t need to specify any cpds for 

this particular node.  

 The type of formula P2(knowledge) is softmax (we 

quote this notation from BNT, indicating the same 

meaning of fitting a logistic regression on the current 

discrete node over its parents). Equation P2(T) represents 

the parameter already know in formula (1), and we gives it 

an abbreviated name as L0.  

… 

<eclasses> 

 <eclass> 

  <id> 1 </id> 

  <formula> P1(kc) </formula> 

  <type> root </type> 

 </eclass> 

 

 <eclass> 

  <id> 2 </id> 

  <formula> P2(knowledge) </formula> 

  <type> softmax </type> 

  <cpd> 

   <eq> P2(T) </eq> 

             <init> rand </init><param> L0 </param> 

   <eq> P2(F) </eq> 

             <init> 1-P1(T) </init><param> null </param> 

  </cpd> 

 </eclass> 

 

 <eclass> 

  <id> 3 </id> 

  <formula> P3(fluent| knowledge) </formula> 

  <type> discrete </type> 

  <cpd> 

   <eq> P3(T|F) </eq> 

             <init> rand </init><param> guess </param> 

   <eq> P3(F|T) </eq> 

             <init> rand </init><param> slip </param> 

   <eq> P3(F|F) </eq> 

             <init> 1-P3(T|F) </init><param> null </param> 

   <eq> P3(T|T) </eq> 

             <init> 1-P3(F|T) </init><param> null </param> 

  </cpd> 

 </eclass> 

  

 <eclass> 

  <id> 4 </id> 

  <formula> P4(knowledge| knowledge) </formula> 

  <type> softmax </type> 

  <cpd> 

   <eq> P4(T|F) </eq> 

   <init> rand </init><param> learn </param>   

   <eq> P4(F|T) </eq> 

   <init> rand </init><param> forget </param>   

   <eq> P4(F|F) </eq> 

   <init> 1-P4(T|F) </init><param> null </param>  

   <eq> P4(T|T) </eq> 

   <init> 1-P4(F|T) </init><param> null </param> 

  </cpd> 

 </eclass> 

</eclasses> 

… 

 Figure 3. A Specification of the LR-DBN Parameters  



 Since LR-DBN uses EM algorithm to learn parameters. 

So empirically we can set an initial value as a starting point 

for EM, or we can set init as rand to randomly choose a 

starting point. Due to the complementary property of 

probabilities, we have to initialize P2(F) as 1-P2(T). We 

also give a null name to P2(F) to avoid outputting 

redundant  parameters since it can be easily calculated as 

the complement of L0. 

 Formula P3(fluent| knowledge) has a 2-by-2 discrete 

CPD table. Equations P3(T|F) and P3(F|T) respectively 

represent the parameters guess and slip. The last formula 

P4(knowledge| knowledge) is type of softmax as well, 

since P4(T|F) and P4(F|T) represent the logistic 

regressions in formulas (2) and (3) respectively. Note that 

we do not initialize “forget” with zero as we usually do in 

traditional knowledge tracing because of the different 

meaning of “forget” in LR-DBN.   

2.2 Input/Output Data Format 

LR-DBN uses BNT-SM’s existing input and output data 

formats, adding columns for the multiple subskills. The 

input data sources, such as evidence.train.xls and 

evidence.test.xls for our example in Figure 4, are tabulated 

files with Tab separated columns.  

… 

 

<input> 

 <evidence_train> evidence.train.xls </evidence_train> 

 <evidence_test> evidence.test.xl s</evidence_test> 

</input> 

 

<output>  

 <param_table> param_table.xls </param_table> 

 <inference_result> inference_result.xls </inference_result> 

 <inference_result_header> inference_result.xls </inference 

_result_header> 

 <log> log.txt </log> 

</output> 

… 

Figure 4. Specification of LR-DBN input and output in BNT-SM 

 Each file has a header line with the (prefixed) names that 

were specified in the XML. A row represents one step of a 

user’s attempt on a skill. Table 1 shows a partial input data 

of children’s oral reading fluency.  

Table 1. An Example of Input Data Sources for LR-DBN 

user skill kc_c kc_a kc_t kc_h knowledge fluent 

mTS1 CAT 2 2 2 1 NULL 2 

mTS1 HAT 2 2 2 1 NULL 1 

mTS1 HAT 1 2 2 2 NULL 2 

… … … … … … … … 

 The multiple subskills headers start with a prefix “kc_” 

as specified in Figure 2, and their values are observed as 1 

for not required in current step or 2 for required. Values of 

fluent are observed as 1 for false and 2 for true. This 

follows the tradition that a Matlab cell’s indices starts from 

1. Values for knowledge are set as NULL since they are 

not observed in the input evidences. Although we omit the 

time stamp in input data, it should be sorted by the latest 

attempting time for each user in advance. 

 There are three output files as specified in Figure 4. The 

param_table.xls outputs each user’s estimated parameters 

that were specified by a non-null name in the XML. Table 

2 gives an example, where the #cases denotes how many 

cases have been read for each user in the input training 

data, and the ll denotes the maximized likelihood value by 

the EM algorithm. 

Table 2. An Example of Output Parameter Table for LR-DBN 

user #cases ll L0_c learn_ c forget_ c … guess slip 

mTS1 430 -7.38 3.66 4.32 0.32 … 0.20 0.04 

mTS2 1348 -5.75 -2.98 4.46 0.03 … 0.21 0.08 

mTU1 1100 -9.91 1.22 -0.24 1.23 … 0.30 0.05 

… …  … … … … … … 

 The other two files are related to output the inference 

results. If we set the value of inference_result_header as 

the same as of the inference_result (as in Figure 4), it will 

generate a copy of the input test file but replace NULL 

knowledge with its inferred probability, as Table 3 shows. 

Table 3. An Example of Output Inference Result for LR-DBN 

user skill kc_c kc_a kc_t kc_h knowledge fluent 

mTS1 CAT 2 2 2 1 0.563 1 

mTS1 CAT 2 2 2 1 0.994 1 

mTS1 HAT 1 2 2 2 0.996 2 

… … … … … … … … 

 Finally, a Matlab command invokes LR-DBN: 

[property evidence hash_bnet] = RunBnet('property.xml'); 

Here property.xml is the XML specification file. BNT-

SM’s RunBnet.m function then trains and tests the DBN. 

 


